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Abstract

High throughput microreaction systems require a large number of microchannels operating in parallel (scale-out/number-up). Manifold
structures should ensure the same residence time in all microchannels for operations involving heat/mass transfer and reactions. In this
paper, flow distribution has been studied for two different manifold structures, namely consecutive and bifurcation, using a method based on
electrical resistance networks. The method is validated against finite element simulations. The analytical model developed can be applied
to both circular and rectangular channels and is used to study the effects of manufacturing tolerances and of channel blockages on flow
distribution. Guidelines are drawn on the suitability of the manifold structures studied under different operating conditions, fabrication
constraints and design objectives, based on their ability to produce narrow residence time distributions in the microchannel reactors.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The thin fluid layers present in microchannel reactors
allow fast and controlled heat and mass transfer rates. For
increased throughput, however, a number of such reactors
operating in parallel is needed (scale-out or number-up).
This type of scale up would ensure that findings from a sin-
gle microchannel unit apply to the whole scaled out device,
provided that the flow conditions in each channel are sim-
ilar. Appropriate manifold structures are therefore needed
to distribute the flow from a common reactant reservoir
through the microchannels to a common product reservoir
in a way that maintains the same residence time in all
microchannels. Mean residence time in a microchannel to-
gether with temperature and pressure determine conversion
and selectivity of reactions.

Commenge et al.[1] analysed flow distribution in a mul-
tichannel microreactor with a consecutive type of manifold
and optimised the reactor design for single-phase flow dis-
tribution. A resistance network method combined with an
optimising function was used to calculate the varying diam-
eters of flow distributing and collecting channels that give
almost uniform flow distribution while avoiding unrealistic
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channel geometries. Bejan and Errera[2] found that a frac-
tal tree-like network structure (observed widely in natural
structures such as cracks in a dry ground, lungs, arteries or
veins and urban growth) not only gave flow uniformity but
also minimised flow resistance through avolume-to-point
path in a porous medium for a single-phase fluid. Yongping
and Cheng[3] concluded that fractal tree-like microchannel
networks have better heat transfer capabilities and require
lower pumping power in comparison to traditional parallel
channels; in this work, however, additional pressure losses
due to bends that can appear at higher velocities were ne-
glected. In contrast, in monoliths the flow expansion at the
inlet cone leads to vortex formation that restricts the flow
uniformity [4,5].

For the design of manifold structures that ensure uniform
flow distribution, the equations describing flow in each mi-
crochannel need to be known. Researchers have questioned
whether flow equations from large-scale systems can be
used in micron size channels. In a recent review Judy et al.
[6] showed that Stokes flow theory predicted friction fac-
tors well in laminar flow while deviations were within the
experimental uncertainties due to the difficulty in conduct-
ing experiments at this scale, which would explain previous
discrepancies between theory and experiments. In case of
gas flow inside microchannels, rarefaction phenomena may
appear at Knudsen numbers(Kn = λ/DC) larger than 0.01,
which represent very small channels (e.g. argon at 25◦C
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Nomenclature

A channel cross-sectional area (m2)
b maximum bifurcation level
d/c distributing/collecting
D hydraulic nominal diameter (m)
DC characteristic length. The smallest

dimension of the reaction channels
(nominal diameter in circular channels
and nominal depth or width in rectangular
ones) (m)

E channel depth (m)
f friction factor
FD divergence from flow equipartition (%)
Kn Knudsen number
L channel length (m)
N number of reaction channels
P pressure (Pa)
�P pressure drop (Pa)
P0 reference pressure (Pa)
PAR parameters determining the flow

distribution solution
Q flow rate (m3/s)
R frictional channel resistance (Pa s/m3)
Re Reynolds number
S, V S = 2(j − 1)2b−i + 1, V = 2j2b−i; first

and last reaction channel in the bifurcation
manifold that contributes to the close loop
j (j = 1, . . . ,2i/2) of level i

sep nominal separation between reaction
channels (m)

t mean residence time in a channel (s)
U fluid velocity (m/s)
W channel width (m)

Subscripts
A distributing channel
B collecting channel
Bif bifurcation
C characteristic dimension
Consec consecutive
EQ equivalent property
EQUI property under flow equipartition
Exp experimental
m mean value
MAX maximum value
Nom nominal value
R reaction channel
T total quantity of property entering

the structure

Superscripts
# dimensionless variable

Greek letters
δ construction tolerance or channel dimensional

variation (m)
λ molecular mean free path (m)
λNC non-circularity coefficient
µ viscosity (kg/m s)
σ sample standard deviation (%)

and atmospheric pressure hasλ = 0.07�m [7], giving
DC = 7�m).

In the present work, flow distribution in two different
types of structures is studied using an analytical model anal-
ogous to electrical resistance networks[8]. This approach
was chosen since it allows a large number of manifold
structure geometries to be evaluated in less time than with
computational fluid dynamics (CFD) simulations. The two
structures studied are: (a) consecutive and (b) bifurcation
(seeFig. 1). The analysis is restricted to single-phase lami-
nar flow, commonly occurring in microscale, constant den-
sity and viscosity along the whole structure and no change
of moles in gaseous reactions but can be extended to in-
clude these cases. It is also assumed that the fluid behaves
as a continuum and pressure drop can be calculated by the
equations used in large-scale flows. Compared to the fractal
tree-like structure where the channels at the last level have
the smallest length and diameter, in the bifurcation struc-
ture (Fig. 1b) the reaction channels (last level channels) are
usually the longest ones.

2. Analytical model

To study flow distribution in a manifold structure the con-
cept of an electrical resistance network is used. This is pos-
sible under laminar flow conditions where the relationship
between frictional pressure drop�P and flow rateQ (or ve-
locity U) in each channel is linear[1] and additional pres-
sure losses at entrance, exit, bends and branching/merging
of channels are negligible at low Reynolds numbers,Re.
For laminar flow in circular channels the Hagen–Poiseuille
equation can be used to estimate pressure drop for a given
velocity U [9]. In non-circular channels, however, the chan-
nel hydraulic diameter,D (four times the channel area over
wetted perimeter), combined with a non-circularity factor,
λNC, that depends on channel geometry need to be included
in the Hagen–Poiseuille equation for pressure drop[1]. This
approach is used in this work and the Hagen–Poiseuille equa-
tion becomes:

�P = 32µLλNC

D2
U = 32µLλNC

D2A
Q (1)

For non-dimensionalisingEq. (1) the smallest dimension
of the reaction channels is chosen as characteristic length,
DC (i.e. nominal diameter in circular channels and nominal
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Fig. 1. Schematic diagrams of (a) consecutive and (b) bifurcation manifold structures. Consecutive manifold shows two possible designs: Method 1 (—)
and Method 2 (- - -).

depth or width in rectangular ones), while the flow rate in
each reaction channel when the flow is uniformly distributed
(equipartition flow ratefor identical reaction channels) is
chosen as characteristic flow rateQC = QT/N. The char-
acteristic area is defined asAC = πD2

C/4 for both circular
and rectangular channels and the characteristic velocity is
UC = 4QT/(NπD

2
C). The following dimensionless param-

eters are used:L# = L/DC, D# = D/DC, W# = W/DC,
E# = E/DC, A# = A/AC, Q# = Q/QC, U# = U/UC,
Q#

T = N and dimensionless residence time and pressure are
given by Eqs. (2) and (3), respectively (# denotes dimen-
sionless parameter):

t# = tUC

DC
= L#

U# (2)

P# = (P − P0)DC

µUC
(3)

whereP0 is a reference pressure. From dimensional analysis
Eq. (1)becomesEq. (4)and in circular channels the dimen-
sionless resistance is given byEq. (5). In Eq. (4) pressure
difference is equivalent to potential difference and flow rate
is equivalent to current in Ohm’s law:

�P# = R#Q# (4)

R# = 32L#

D#4
(5)

In non-circular channels, the non-circularity coefficientλNC
can be found from the experimental values of the product
f Re(equal to 64 in circular channels) obtained from pressure
drop measurements (seeEq. (6)) [6]. However, there are
available equations for the most common geometries[1,6]
together with exact solutions for creeping flow[10].

λNC = 1
64(f Re)Exp (6)

In rectangular channels,Eq. (7) is used to calculate the
non-circularity coefficientλNC when 0≤ E/W ≤ 1 while
W/E is replaced byE/W whenE/W ≥ 1 [1].

λNC = 3/2

(1 − 0.351E/W)2(1 + E/W)2 , 0 ≤ E

W
≤ 1 (7)

Considering the hydraulic diameterD = 2EW/(E + W)
and areaA = WE, Eq. (1)becomesEq. (4) for rectangular
channels as well, where the dimensionless resistance is now
defined byEq. (8) or (9), the latter being more useful for
comparisons with circular channels:

R# = 3πL#

min2(E#,W#)(1 − 0.351 min(E#/W#,W#/E#))2W#E#

(8)

R# = 32πL#λNC

D#4(E#/W# +W#/E# + 2)
(9)

Manifolds with different geometries can be compared
when the corresponding reaction channels have the same
cross-sectional area so that the residence time in the chan-
nels remains constant (if the length is not modified). The
smaller dimension of a rectangular channel of a given as-
pect ratio that has the same cross-sectional area as a circular
one of diameterD is given by the following equation:

min(E,W) =
(
πmin

(
E

W
,
W

E

))0.5
D

2
(10)

2.1. Resistance network for consecutive structure

The consecutive structure depicted inFig. 1ais converted
to the resistance network shown inFig. 2that contains (N−
1) loops andN reaction channels.

In this configuration the distributing and collecting chan-
nels are divided intoN zones, where each zone represents
the distance between two reaction channels plus the reac-
tion channel width (see patterned zones inFig. 3). In the
N-channel consecutive structure inFig. 2, RR,j, RA,j and
RB,j are the flow resistances at channel or zonej (j = 1 to
N) for reaction, distributing and collecting channels, respec-
tively. If pressure drop is balanced in each loop (loop rule),
the following (N − 1) equations are obtained:

QA,(j+1)RA,(j+1) +QR,(j+1)RR,(j+1)

−QB,(N−j+1)RB,(N−j+1) −QR,jRR,j = 0,

j = 1,2, . . . , (N − 1) (11)
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Fig. 2. Resistance network for consecutive structure.

QA,(j+1) andQB,(N−j+1) represent flow rates in zones (j+
1) and (N − j + 1) of the distributing and collecting chan-
nels, respectively, and can be expressed as a function of the
reaction channels’ flow rates by applying mass balances at
each junction (junction rule):

QA,(j+1) =
k=N∑
k=1

QR,k −
k=j∑
k=1

QR,k (12)

QB,(N−j+1) =
k=j∑
k=1

QR,k (13)

Substituting Eqs. (12) and (13)into Eq. (11), non-
dimensionalising and dividing throughout byR#

R,j gives
(N − 1) equations represented byEq. (14) for loop j. An
overall mass balance produces theNth expression of the
linear system ofN-equations,Eq. (15), necessary to solve
the flow distributionQ#

R,j (j = 1 to N). The system can
be expressed and solved in a matrix form where the coeffi-
cients of the matrix are calculated from the ratios of resis-
tancesR#

A,(j+1)/R
#
R,j, R

#
B,(N−j+1)/R

#
R,j, R

#
R and(j+1)/R

#
R,j

for j = 1 to (N − 1), which together withN, the number
of reaction channels, gives 3(N − 1)+ 1 parameters (PAR)
that determine the flow distribution solution. Resistances
R#

A,1 andR#
B,1 do not affect flow distribution.

−
k=N∑
k=j+1

Q#
R,k

R#
A,(j+1)

R#
R,j

+
k=j∑
k=1

Q#
R,k

R#
B,(N−j+1)

R#
R,j

−Q#
R,(j+1)

R#
R,(j+1)

R#
R,j

+Q#
R,j = 0,

j = 1,2, . . . , (N − 1) (14)

k=N∑
k=1

Q#
R,k = Q#

T = N (15)

Fig. 3. Zone length and diameter in the distributing channel.

However, if all reaction channels are identical(R#
R,j = R#

R),
PARbecomes 2(N − 1)+ 1 and if the distributing and col-
lecting channels are also the same(R#

A,j = R#
B,j), PAR=

(N−1)+1. Moreover, when all zones in distributing and col-
lecting channels have the same geometry (R#

A,j = R#
B,j =

R#
A), PAR= 2, namelyRA/RR andN. The actual ratios of

channel dimensions can be extracted from these ratios of
resistances according toEqs. (5) and (8)for circular and
rectangular channels, respectively. To calculate resistances
R# from Eq. (5)or (8), the length of eachj-zone in the dis-
tributing and collecting channels,L#

A,j andL#
B,j (j = 2 to

N), is defined according toEq. (16) for circular channels
andFig. 3, which shows a distributing channel with constant
diameter. The same equation can be used for rectangular
channels where channel width is used instead of diameter.
Varying widths for the distributing and collecting channels
are also possible where the zone width is taken equal to the
average value along its length[1].

L#
A,j = L#

B,j = sep# +D#
R,j, j = 2,3, . . . , N (16)

2.2. Resistance network for bifurcation structure

Fig. 4represents the resistance network for the bifurcation
structure shown inFig. 1b, where each bifurcation generates
a new bifurcation leveli. The bifurcation structure produces
flow equipartition when all channels at the same level have
exactly the same geometrical characteristics, the length of
the straight channel after each bend is sufficient to develop
a symmetrical velocity profile (1 to 10 times the channel
diameter forRebetween 1 and 400 in 2D) and there is no
variation in the channel diameters due to manufacturing tol-
erances. This structure, however, tends to occupy larger area
compared to the consecutive one. The inlet and outlet chan-
nels belong to level 0 and their resistances do not affect flow
distribution but only the total pressure drop. The last bifur-
cation level (i = b) corresponds to the reaction channels.
The number of reaction channels at the last level (i = b) is
given byN = 2b and the number of channels in a lower bi-
furcation leveli is given by 2×2i, as there is the same num-
ber of channels at each side of the reaction channels. The
channels at eachi-level are numbered from top to bottom,
from 1 to 2× 2i, starting from the left side and continuing
to the right side. If the number of a channel in the left side
is j, the number of its symmetrical channel in the right side
is j+ 2i. The flow rateQij (i < b) through channel number
j at leveli, is the sum of the reaction channel flow rates that
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Fig. 4. Resistance network for bifurcation structure.

go from number(j − 1)2b−i + 1 to j2b−i. For instance, in
a three-level structureQ1,2 is the contribution ofQ3,5, Q3,6,
Q3,7 andQ3,8. The flow rate of its symmetry channel to the
right side,Q1,4 is the same. ResistanceR#

i,j (channelj at level
i) is found byEq. (5)or (8). The network can be simplified
by the use of equivalent resistances given byEqs. (17) and
(18) for j resistances in series or in parallel, respectively:

R#
EQ =

∑
j

R#
j (17)

1

R#
EQ

=
∑
j

1

R#
j

(18)

At level i, there are 2i equivalent resistances, which are num-
bered from top (j = 1) to bottom (j = 2i). Eq. (19)is used
to calculate equivalent resistances at leveli < b. At level b,
R#

EQ,b,j = R#
b,j. Fig. 4 shows the area that corresponds to

the equivalent resistanceREQ,2,j as a dash-dot rectangle:

R#
EQ,i,j =

R#
EQ,(i+1),jR

#
EQ,(i+1),(j+1)

R#
EQ,(i+1),j + R#

EQ,(i+1),(j+1)

+ R#
i,j + R#

i,(j+2i),

i = 1,2, . . . , (b− 1), j = 1, . . . ,2i (19)

Applying mechanical energy and mass balances (loop and
junction rules), the following system ofN − 1 = 2b − 1
linear equations is obtained:

k=(S+V−1)/2∑
k=S

Q#
b,k

R#
EQ,i,(2j−1)

R#
EQ,i,2j

−
k=V∑

k=((S+V−1)/2)+1

Q#
b,k = 0,

i = 1,2, . . . , b, j = 1, . . . ,
2i

2
(20)

where leveli goes from 1 tob, and loop j goes from 1
to 2i /2, which is the number of close loops in each level
(equations). The number of close loops or equations per level
is a quarter of the number of channels per level wheni < b

and half the number of channels per level wheni = b. Sand

V are given byS = 2(j − 1)2b−i + 1 andV = 2j2b−i. An
overall mass balance similar toEq. (15)with N = 2b gives
the Nth equation of the system ofN linear equations that
can be expressed and solved in matrix form. The number of
parameters determining the flow distribution solution for this
structure isPAR= (2b − 1)+ 1 and is defined by the ratios
REQ,i,(2j−1)/REQ,i,2j (i = 1 to b andj = 1 to 2i /2) and the
variableN. In this structure for same channel geometry at
each level, sufficient straight channel length after each bend
to ensure symmetrical velocity profile and in the absence of
dimensional channel variations, flow equipartition is always
achieved.

2.3. Overall pressure drop through the microstructure

At steady state, any flow path in the manifold gives the
total pressure drop through the structure.Eq. (21)applies for
the consecutive structure (Q#

T = N) while for the bifurcation
one, the total resistance is calculated byEq. (22) and the
total pressure drop viaEq. (23):

�P#
T,Consec= Q#

T(R
#
A,1 + R#

B,1)+Q#
R,NR

#
R,N

+
N−1∑
j=1


Q#

T −
j∑
k=1

Q#
R,k


R#

A,(j+1) (21)

R#
T = R#

0,1 + R#
0,2 +

R#
EQ,1,1R

#
EQ,1,2

R#
EQ,1,1 + R#

EQ,1,2

(22)

�P#
T,Bif = Q#

TR
#
T (23)

2.4. Manufacturing tolerances and channel blockages

Differences in the microstructure dimensions from the
nominal sizes (tolerances) depend on the manufacturing
process and feature size and can vary with direction[11].
Micro-electrodischarge machining(�-EDM) has typical
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manufacturing variations of 3–6�m [11,12], which depend
on channel length and aspect ratio. In case of parallel chan-
nels, the manufacturing variations could be minimised if the
separation between two channels is greater than 200�m.
Milling gives a maximum difference of 10–20�m between
the engineering drawing and the milled channel[11,13].
This depends on the milling machine as well as on the
accuracy of the milling head. If several parallel microchan-
nels are fabricated, the differences between them are sig-
nificantly smaller (approximately 5�m). The fabrication
variations usingetchingare mostly better than 20�m, and
depend substantially on the wafer material, channel aspect
ratio and method[11]. Together with manufacturing vari-
ations, particle deposition, corrosion effects and irregular
catalyst coating can also affect channel dimensions.

In order to study the effect of manufacturing tolerances
and other channel dimensional variations on flow equipar-
tition in manifolds, a maximum possible toleranceδ#MAX
(δMAX /DC) is assumed that affects diameter (δ#D,MAX ) in cir-

cular channels and both width (δ#W,MAX ) and depth (δ#E,MAX )
in rectangular ones. IfTi,j, represents ai × j matrix with
random numbers between 0 and 1, the tolerance matrixδ#i,j
that is applied to all channels in each structure for circu-
lar geometries is given byEq. (24). Combining the toler-
ance matrix with that of the nominal diameter,D#

Nom,i,j
(see Eq. (25)), gives the real channel diameters that are
within D#

Nom ± δ#D,MAX . This implies constant tolerance
along each channel. For rectangular channels, equations sim-
ilar to Eqs. (24) and (25)are obtained for depth and width.
If an increase in channel width also results in an increase
in channel depth (same sign in all channels) not necessarily
by the same amount but by the same percentage, the same
Ti,j matrix is used for both width and depth tolerances with
δ#W,MAX and δ#E,MAX , respectively. However, if depth and
width tolerances vary independently, two different random
Ti,j matrices are used withδ#E,MAX and δ#W,MAX , respec-
tively. In the consecutive structure,i takes the valuesA for
distributing,R for reaction andB for collecting channel and
j refers to the channel or zone number (j = 1 to N). In the
bifurcation structurei refers to the bifurcation level andj to
the channel number at that level (j = 1 to 2× 2i except at
last leveli = b, wherej = 1 to 2b):

δ#i,j = Ti,j 2δ#MAX − δ#MAX (24)

D#
i,j = D#

Nom,i,j + δ#i,j (25)

In the consecutive structure, the length of the reaction chan-
nels is assumed to be unaffected by tolerances while the zone
lengths in the distributing and collecting channels are found
from Eqs. (26) and (27)for j = 1 to (N − 1) in circular
channels. The same equations can be applied to rectangular
channels where channel width is used instead of diameter.
In the bifurcation structure, all channel lengths are assumed
to be unaffected by tolerances as they are several times the
characteristic dimensionDC, and length also has a smaller
effect thanDC on the pressure drop equation:

L#
A,(j+1) = sep# +D#

R,(j+1) + 1
2(D

#
Nom −D#

R,j)

+1
2(D

#
Nom −D#

R,(j+1)) (26)

L#
B,(N−j+1) = sep# +D#

R,(j+1) + 1
2(D

#
Nom −D#

R,j)

+1
2(D

#
Nom −D#

R,(j+1)) (27)

In order to simulate channel blockage, an infinite resistance
in the blocked channel is applied.

2.5. Evaluation of flow distribution in manifold structures

In the absence of dimensional variations and for identi-
cal reaction channels, flow rate in each reaction channel is
inversely proportional to residence time and both parame-
ters can be used to indicate how good the flow distribution
is. When dimensional variations are present, the reaction
channels do not necessarily have the same cross-sectional
area and equal flow rates in each channel will not result in
the same residence times. Given its importance in processes
involving mass/heat transfer and reaction, residence time
instead of flow rate will be used to assess flow distribution
in manifold structures when variations are present. Resi-
dence time for reaction channelj = 1 to N is given by the
following equation:

tR,j = LR,j

UR,j
→ t#R,j =

L#
R,j

U#
R,j

(28)

As different reaction channels may have different flow rates,
a linear mean of the residence times may not be realistic.
An average value for the structure is obtained from the ratio
of the total volume in reaction channels to the total flow
rate entering the structure:

tm = L
N∑
j=1

AR,j

QT
→ t#m = L#

N∑
j=1

A#
R,j

N
(29)

The standard deviationσ (%) of the residence time distri-
bution in the reaction channels, which provides a measure-
ment of the uniformity of flow distribution, is given by the
equation:

σ (%) = 100

√√√√√ 1

N

N∑
j=1

(
t#R,j

t#m
− 1

)2

(30)

3. Results and discussion

3.1. Designs and criteria for uniform flow distribution in
manifold structures in the absence of channel dimensional
variations

When there are no dimensional variations, uniform flow
distribution is always achieved in the bifurcation structure
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where the channels at each level have the same size and the
length of straight channel after each bend is sufficient for
a symmetrical velocity profile to develop. In the consecu-
tive structure, however, a proper design of the distributing
and collecting (d/c) channels is required for flow equiparti-
tion and two different methods are analysed below. To char-
acterise consecutive structure designs that do not result in
equipartition, a divergence parameterFD (Flow Distribu-
tion) is used, defined byEq. (31). In the absence of dimen-
sional variations, where all reaction channels have the same
length and area,FD is also very close to the maximum res-
idence time divergence from the desired residence time in
the reaction channels (e.g. a residence time divergence of
5.26% is obtained whenFD = 5%). Therefore, FD is used
as a design parameter when tolerances do not play role:

FD (%) = N
max
j=1

[
100

|QEQUI −QR,j|
QEQUI

]

= N
max
j=1

[100|1 −Q#
R,j|] (31)

3.1.1. Method 1: uniform flow distribution via reduction of
pressure drop in d/c channels—uniform cross-section d/c
channels

In this approach pressure drop through the d/c channels is
reduced compared to that in the reaction channels. This can
be achieved if the d/c channels have a constant cross-section,
larger than that of the reaction channels by a factor that de-
pends on channel geometry, number and required degree of
divergence from flow equipartition,FD. For zero divergence,
zero pressure drop in the d/c channels is required. Therefore,
considering the same geometry for the d/c zones (PAR= 2),
Eqs. (14) and (15)are solved iteratively for different num-
ber of reaction channelsN and different ratios of resistances
RR/RA (equal toRR/RB) until the flow rate in each reaction
channel diverges less than a certainFD (%). Fig. 5 shows
results for four differentFD: 1%, 2%, 5% and 10%. These
results are valid for any channel geometry and it can be seen

Fig. 5. RatioRR/RA required for uniform flow distribution in the consec-
utive structure as a function of the number of reaction channelsN and
the divergence from flow equipartitionFD.

Fig. 6. Ratio DA/DR of circular channels required for uniform flow
distribution (FD = 1%) in the consecutive structure as a function of the
number of reaction channels,N, and the length ratioLA/LR.

that a large ratio of resistances (or cross-sectional areas) is
required for uniform flow distribution, especially for 1% di-
vergence, which increases with the number of channels (i.e.
for N = 100 andFD = 1%,RR/RA = 1.61× 105).

From the above results for resistance ratios, the actual
channel diameter and length ratios can be obtained for cir-
cular geometries fromEq. (5). The ratios of d/c to reaction
channel diametersDA/DR are shown inFig. 6 for 1% di-
vergence from flow equipartition as a function of the ratio
of zone length in d/c channels to reaction channel length,
LA/LR and number of reaction channels,N. As the number
of reaction channelsN and the length ratioLA/LR increase,
the required relative size of the d/c channels with respect
to the reaction channels for flow equipartition increases.
These results on flow distribution shown inFig. 6also apply
to channels with rectangular cross-section when hydraulic
diameters are considered and all channels in the structure
have the same aspect ratio or the inverse one (seeEqs. (7)
and (9)). This is feasible when different microchannel depths
can be manufactured in the same substrate (i.e. anisotropic
etching in silicon wafer[14]). However, when all chan-
nels have the same depth,Fig. 6 can still be used if the
width/depth ratio of the d/c channels is made equal to the
depth/width ratio of the reaction channels. This is achieved
by using an intermediate depth between the reaction chan-
nel and the d/c channel widths. If the depth is equal to or
smaller than the reaction channel width,Fig. 6 cannot be
used anymore and the width of the d/c channels needs to
be very large to obtain the required ratioRR/RA for flow
equipartition (since the hydraulic diameter cannot be larger
than double the minimum dimension). For any rectangular
geometry (stillPAR= 2), a similar graph toFig. 6 can be
obtained fromFig. 5 together withEq. (8)where flow dis-
tribution would depend on five geometrical variables rather
than three: (LA/LR, ER/WR, EA /WA, WA/WR andN).

Fig. 7 shows flow distribution in the reaction channels
for two different hydraulic diameter ratiosD#

A = 1 (FD =
101.6%) andD#

A = 3.44 (FD = 1%) for a 16-channel
structure with length ratioLA/LR = 0.04 and square
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Fig. 7. Flow distribution in square channels obtained by the analytical
model and the FEM simulations.

channels. Comparisons are also carried out using a com-
mercial software (FEMLAB) based on the finite elements
method (FEM) to solve the continuity and Navier Stokes
equations for different Reynolds numbers,Re, taking into
account the additional pressure losses neglected in the ana-
lytical model. The characteristic dimensions used in theRe
definition are the same as those in the analytical model and
gravity effects are neglected. Square channels rather than
circular ones are chosen for this comparison as they give
a better quality mesh in the FEMLAB simulations. The
mesh is composed of 21,000 Lagrange-type second-order
elements and an iterative algorithm is selected to solve the
system of discretised equations. Two different Reynolds
numbers,Re = 0.01 and 10, are used. The results from
FEMLAB are very similar to those of the analytical model
at low Re. Some discrepancies at higherRe and FD are
probably due to the effect of additional pressure losses that
are neglected in the analytical model. For this structure
FD = 5% would reduce the required ratioD#

A to 2.30.
If a rectangular channel structure is used with the same

specifications as the one above (16 reaction channels,
LA/LR = 0.04) and reaction channels with aspect ratio
ER/WR = 2 (WR is the characteristic dimension) where all
channels have the same depth (E#

A = E#
B = 2), then for

equal d/c and reaction channel widthsFD = 101.6% is ob-
tained (as above). The width of the d/c channels needs to be
W#

A = 25 for FD = 1%, which corresponds to a hydraulic
diameter ratio ofDA/DR = 2.78 instead of 3.44 (effect of
non-circularity coefficient). However,FD = 5% is achieved
for W#

A = 6.01. If the depth of all channels is reduced to
E# = 1 with a reaction channels’ aspect ratioER/WR = 1,
the width of the d/c channels forFD = 1% becomes very
large,W#

B = 59.5.

3.1.2. Method 2: uniform flow distribution via equalisation
of pressure drop in reaction channels—non-uniform
cross-section d/c channels

In the second approach distributing and collecting chan-
nels are designed with gradually decreasing and increasing
cross-sectional area, respectively, not necessarily linearly,

in the flow direction. There is no size restriction for the
d/c channel dimensions for flow equipartition but the actual
size will define the total pressure drop and the effect of di-
mensional variations on flow distribution. This approach is
the most suitable when the manifold area needs to be min-
imised and all channels must have the same depth, which
in turn is similar to or smaller than the reaction channels’
width. Commenge et al.[1] suggested an optimised design
with non-linear d/c channels to limit the infinite solutions
available for flow equipartition since some of them can give
non-realistic geometries and flow recirculation patterns. Op-
timum linear d/c channels were also considered, which pro-
duce solutions close to flow equipartition in most cases.

If flow equipartition in a design with varying d/c channel
diameters is assumed(QR,j = QT/N), the system of equa-
tions given byEqs. (14) and (15)is simplified to (N−1) in-
dependent equations, that relate the geometry of zone (j+1)
in the distributing channel to that of zone (N− j+ 1) in the
collecting one (seeEq. (32)):

R#
A,(j+1) =

R#
B,(N−j+1)

(N/j − 1)
, j = 1,2, . . . , (N − 1) (32)

If therefore, the collecting channel geometry is known,
the geometry of the distributing channel that produces
flow equipartition can be found. When both d/c channels
are symmetrical there are (N − 1) relationships given by
R#

A,(j+1) = R#
B,(j+1) which together withEq. (32) only

produce(N − 1)/2 or (N − 2)/2 independent relationships
(depending on whetherN is odd or even respectively), since
Eq. (32) is the same for bothj = j and j = (N − j).
Therefore, for (N − 1) zones there are(N − 1)/2 or N/2
degrees of freedom (either odd or evenN, respectively) that
produce infinite geometries for flow equipartition.

A simple method is suggested below for finding the exact
geometry for perfect flow equipartition in such a structure
with symmetrical d/c channels that occupy small area and
have nearly linear diameter (or width) variation when the
value ofD#

B,N (orW#
B,N for rectangular channels) is given:

(A) Initially, the optimum linear d/c channelsare obtained
by calculatingD#

B,2 that together with the givenD#
B,N

produces linear d/c channels with the smallest diver-
genceFD from flow equipartition. An initial guess for
D#

B,2 is found assuming perfect flow equipartition from

Eq. (32)whenR#
A,(j+1) = R#

B,(j+1) (D#
B,1 does not in-

fluence the flow distribution).D#
B,2 needs to be read-

justed untilFD is minimised.
(B) Either the collecting or distributing channel, e.g. col-

lecting channel, is then assumed to have linear geometry
defined by points (D#

B,2, 2) and (D#
B,N , N): D#

B,(j+1) =
D#

B,2 − (j − 1)(D#
B,2 − D#

B,N)/(N − 2). The geome-
try of the distributing channel is found byEq. (32)for
flow equipartition. This does not result in identical d/c
channels but very similar, one linear (seeFig. 8) and
the other slightly curved.
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Fig. 8. Optimum linear and non-linear distributing (or collecting) channels
in the consecutive structure for uniform flow distribution when initial
D#

B,16 = 1 andD#
B,16 = 0.5.

(C) An intermediate geometry between the linear and the
curved one,D#

B,(j+1) = (D#
A,(j+1) + D#

B,(j+1))/2, is
used as a new geometry for the collecting channel, while
from Eq. (32)the distributing channel geometry is re-
calculated, which in circular channels is the same as
that of the collecting channel, resulting in symmetri-
cal d/c channels (seeFig. 8). This geometry is the final
one, in which the final value ofD#

B,N is not exactly the
initial one but very close to it.

A similar procedure (but iterative in the last stage) can be
applied to rectangular channels using channel widths rather
than diameters. This simple method produces feasible ge-
ometries that are close to the optimum linear geometry, in
just a few steps. Both the optimum linear and the non-linear
d/c channel geometries for a 16 reaction channel structure
with LA/LR = 0.04 are shown inFig. 8 for two different
initial valuesD#

B,16 = 1 andD#
B,16 = 0.5, which for the

case of linear channels produceFD = 1.90% and 16.8%,
respectively.

When using optimum linear d/c channels, the divergence
from flow equipartitionFD depends on the number of re-
action channels, ratio of lengthsLA/LR = LB/LR, aspect
ratio in d/c zones and reaction channels andD#

B,N (orW#
B,N

in rectangular channels). For a specific structure,FD can be

Table 1
Dimensions for Designs A, B, C and D, which are 16-channel structures with circular channels (see alsoFig. 8 for Designs B and C)

Design A Design B Design C Design D

Type Consecutive Method 1 Consecutive Method 2 Consecutive Method 2 Bifurcation
d/c channels Uniform Non-linear Non-linear Uniform
FD (%) 1 0 0 0
D#

A=B,j 3.44 – – –
D#

A=B,16 – 0.471 0.937 –
D#
i,j – – – 1

L#
R,j 50 50 50 50
L#

A=B,1 10 10 10 –
L#
i,j(i < b) – – – 10
LA=B/LR 0.04 0.04 0.04 –

improved by modifying the value ofD#
B,N . For example, in a

consecutive circular channel geometry with optimum linear
d/c channels, length ratioLA/LR = 0.04, and diameter in
the first collecting channel zone equal to that of the reaction
channels (D#

B,N = 1), the divergence from flow equipartition
is FD = 1.90% and 19.19% for 16- and 64-channel struc-
tures, respectively (D#

B,2 is 1.72 and 1.95). In the 64-channel

structureD#
B,N = 2.4 (D#

B,2 = 4.45) is required to reduce
FD to 1%. In a rectangular channel structure, where all
channels have the same depth, which in turn is similar to
or smaller than the reaction channel width, the flow diver-
gence for optimum linear d/c channels is much smaller. For
instance, two 16- and 64-channel structures with rectangular
channels, optimum symmetrical d/c channels and constant
depth (E#

i,j = 1) with LA/LR = 0.04, ER/WR = 1 and

W#
B,N = 1 produceFD = 0.14% and 0.33%, respectively,

although larger widths are required for the d/c channels (i.e.
W#

B,2 = 6.6 and 24.1, respectively). However, this result is
much better in relation to wafer area when compared to a
uniform width ofW#

B,j = 59.5 for the d/c channels obtained
in the same 16-channel structure designed by Method 1.

3.2. Effect of manufacturing tolerances on flow distribution

In order to demonstrate the effect on flow distribution of
manufacturing tolerances or changes in channel dimensions
during a process, four 16-reaction channel manifold struc-
tures with circular channels are chosen (Designs A, B, C and
D); three of them are consecutive, designed to give uniform
flow distribution according to the previous section while the
fourth one is based on bifurcation.Table 1shows the dimen-
sions of these designs (for Designs B and C see alsoFig. 8).

In Fig. 9 the distribution of standard deviations of resi-
dence times,σ (%), and its mean value,σm (%), obtained
after 10,000 runs, are shown for the four designs when
δ#D,MAX = 0.05. The residence time variation in the reaction
channels for the maximum standard deviation (worst case
out of 10,000 runs) in each structure is shown inFig. 10. De-
sign B appears to have the largest mean standard deviation,
which shows that although this design produces equiparti-
tion at any value ofD#

B,N in the absence of manufacturing
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Fig. 9. Distribution of standard deviations of residence times in the reaction
channels after 10,000 runs for Designs A, B, C and D.

variations, these can affect significantly the flow distribution
at smallD#

B,N . It is Design C that gives the lowest mean
standard deviation. In Designs A and D even when the d/c
channel resistances are completely removed (i.e. using very
large diameter channels),σm = 5.62% is still higher than
that of Design C, which indicates that d/c channel tolerances
in Design C probably counteract the tolerances in the reac-
tion channels themselves. UsingD#

i,j = 2 in Design D for

all channels except for the reaction channels (D#
R,j = 1) a

similar effect occurs,σm = 5.16% (�P#
m = 2863). Nega-

tive flow rates in some of the reaction channels (flow from
the collecting to the distribution channel) can appear in the
consecutive structures at large values ofδ#D,MAX , mainly in

those designed via Method 2 with smallD#
B,N . For Design

B the first negative flow rates appear atδ#D,MAX = 0.10. In
Design C, negative reaction channel flow rates do not ap-
pear up toδ#D,MAX = 0.55. It is interesting to note that for
Design A (FD = 1%) in the presence of manufacturing tol-
erances, the mean standard deviation of the residence times
is not very different ifFD = 5% is used (in this caseσm =
6.14%). Thus,FD = 5% should be chosen as it only needs
D#

A,j = 2.3 compared toD#
A,j = 3.44 for FD = 1%.

In the above Designs B and C, non-linear collecting and
distributing channels were used. If only linear d/c channels

Fig. 10. Residence times in the reaction channels of Designs A, B, C and
D for the worst scenario out of 10,000 runs.

Fig. 11. Distribution of standard deviations of residence times in the
reaction channels after 10,000 runs for Designs E, F and G.

are possible, flow rates will diverge from the equipartition
flow rate (FD = 19.19 and 1.90%, respectively) while toler-
ances will further increase this divergence (Design B:σm =
25.12% andσMAX = 90.77%; Design C:σm = 5.43% and
σMAX = 8.37%). Linear channels may be easier to manu-
facture but divergence from flow equipartition and effect of
tolerances will depend on parameters such asD#

B,N , num-
ber of reaction channelsN and length ratio and can be large.
For example, the mean standard deviation in a 128-channel
optimum linear structure with the rest of dimensions as De-
sign C (D#

B,128 = 1) is σm = 65.44% (design flow rate
divergence,FD = 38.88%).

As far as the total pressure drop through the manifold is
concerned, the consecutive structure by Method 1 based on
reducing pressure drop through the d/c channels gives the
smallest mean value,�P#

m = 1738. In the rest of the designs,
pressure drop can be reduced by increasing the diameter
of the d/c channels. In the bifurcation structure the channel
flow rate increases as the bifurcation level decreases, and
a gradual increase of the channel diameter with decreasing
channel level would keep the pressure drop low.

In order to compare residence times in manifold struc-
tures with rectangular channels, these must have the same
cross-sectional area (seeEq. (10)). If all channels are square,
δE,MAX andδW,MAX are the same (or similar) and depth and
width tolerances are positively proportional, i.e. a positive
width tolerance produces a positive depth tolerance in each
channel (e.g. KOH etching), the results will be similar to
those shown in the circular channel analysis above. However,
when d/c channels have a different aspect ratio from the re-
action channels, there is a reaction channel aspect ratio that
minimises the effect of tolerances for eachδE,MAX /δW,MAX
ratio. Finally, when the depth and width tolerances in each
channel are not related (e.g. milling), they have a counter-
acting overall effect and there is a reaction channel aspect
ratio that minimises the effect of manufacturing variations
as well. As an example of the last case,Fig. 11shows dis-
tributions of the standard deviation of the residence times
after 10,000 runs for three different 16-channel consecutive
structures (Designs E, F and G) designed by Method 2 with
optimum linear d/c channels where depth and width toler-
ances are not related andδW,MAX = δD,MAX (the same value
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Table 2
Dimensions for Designs E, F and G, which are 16-channel consecutive
structures with rectangular channels designed by Method 2 with optimum
linear d/c channels and same depth in all channelsE# = 1

Design E Design F Design G

Type Consecutive
Method 2

Consecutive
Method 2

Consecutive
Method 2

d/c channels Linear Linear Linear
FD (%) 0.14 0.032 0.069
E#
i,j 1 1 1
W#

R,j 1 2 1.4
W#

B=A,16 1 2 1.4
W#

B=A,2 6.6 20.8 12.2
L#

R,j 56.42 79.79 66.76
LA=B/LR 0.04 0.04 0.04
δW,MAX /δE,MAX 2 2 2
δ#W,MAX 0.0564 0.0798 0.0668

as that used for the circular channel case).Table 2shows the
dimensions of these designs. The absolute tolerances as well
as lengths are the same in all designs although the dimen-
sionless values are different. However, channel separation,
sep, is slightly modified in order to keep the ratioLA/LR =
0.04. Design G with a reaction channel aspect ratio of 1.4
gives the smallest mean standard deviation.

3.3. Effect of channel blockages on flow distribution

Manufacturing defects, clogging processes due to parti-
cle deposition and bubbles trapped inside the channels can
give rise to channel blockages. The response of manifold
Designs A, B, C and D, used in the previous section, is now
studied when one reaction channel (channel 1) is blocked.
Fig. 12 shows the flow rate distribution in the reaction
channels for each design. It can be seen that Design A
reaches a new flow equipartition state with the flow rate of
channel 1 equally distributed among the other channels. In
the consecutive structures with varying diameters in the d/c
channels (Designs B and C), flow equipartition is reached
when the diameter of the d/c channels is sufficiently large.

Fig. 12. Flow distribution in the reaction channels of Designs A, B, C
and D when channel 1 is blocked.

As a result flow distribution improves significantly when
D#

A,16 increases from 0.471 (Design B) to 0.937 (Design
C). A similar situation could be reached in Design D if the
diameter of the d/c channels was sufficiently large.

4. Conclusions

An analytical model based on resistance networks has
been developed for the study of two manifold structures
(consecutive and bifurcation) with different channel geome-
tries. The model can take into account manufacturing varia-
tions randomly generated within specified tolerances as well
as channel blockages at any part of the structure. The re-
sults from the analytical model compared well with those
obtained from computational fluid dynamics simulations at
low to moderate Reynolds numbers. However, the CFD sim-
ulations need time for the geometry and problem set-up,
computation (from several minutes to hours at large chan-
nel numbers) and post-processing of the data, which in case
of statistical or parametric studies where many cases would
need to be run, may be large. With the analytical model only
a few seconds were required to produce each line inFigs. 9
and 11that consisted of 10,000 runs.

In the absence of channel dimensional variations the bi-
furcation structure always produces flow equipartition as
long as the length of the straight channel after each channel
bend is sufficient for a symmetrical velocity profile to de-
velop. Two methods were considered for the design of the
consecutive structure in order to achieve uniform flow dis-
tribution. Method 1 is based on minimising pressure drop
in the distributing/collecting (d/c) channels by using a large
enough uniform cross-section in the d/c channels (seeFigs. 5
and 6). The reduction of pressure drop in d/c channels im-
plies a small effect of channel dimensional variations and
blockages and of additional pressure losses. Method 2 is
based on equalising pressure drop in the reaction channels
by using varying cross-sections in the d/c channels. The lat-
ter method can produce flow equipartition for any size of
the d/c channels in the absence of channel dimensional vari-
ations if non-linear d/c channels are considered. In the case
of linear d/c channels, the divergence from flow equiparti-
tion, FD, is generally small. However, similarly to designs
by Method 1, when linear d/c channels are used in Method
2 an increase of reaction channel number,N, or length ratio
of d/c to reaction channels,LA/LR, would require larger d/c
channel cross-sections to keep the divergenceFD low.

In addition, the analysis of the effect of channel dimen-
sional variations and reaction channel blockages can give
further insight on the performance of each design. When tol-
erances are present, the analytical model can help to identify
the ratio of the d/c to reaction channel cross-sections that
keep the standard deviation of the residence times,σ, in the
reaction channels small. In rectangular channel structures a
reaction channel aspect ratio can be found that minimises
the effect of manufacturing variations on flow distribution.
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Regarding the suitability of each manifold structure un-
der different conditions the following can be concluded. The
consecutive structure obtained by Method 1 is easy to de-
sign and fabricate (Fig. 5 applies to all designs irrespective
of channel geometry and aspect ratio). This design is suit-
able when tolerances are large or uncertain, channel block-
ages are expected, different channel depths are possible or
in case of constant channel depth, this is substantially larger
than the reaction channel width. The consecutive structure
obtained by Method 2 is suitable when tolerances are small
or well-defined because they will affect the design value of
the smallest dimension of the d/c channels. The designs ob-
tained by Method 2 can be simplified using linear d/c chan-
nels, which in general produce a small divergence from flow
equipartition. Method 2 is preferable when Method 1 is un-
feasible or gives large d/c channel widths, which happens
when all channels are etched with the same depth and the
reaction channel depth is similar to or smaller than the re-
action channel width (e.g. in the 16-channel structure anal-
ysed inSection 3.2with constant channel depth equal to the
reaction channel width, a 89% d/c channel width reduction
is achieved using Method 2 compared to Method 1). The
bifurcation structure is generally a good design and in the
absence of channel dimensional variations it is the only one
where flow distribution does not change for different flow
ratesQT at highRewhere additional pressure losses become
important. In the consecutive structures, a change in the flow
rate at highReproduces a non-symmetrical change of the
additional pressure losses due to bends and splits that would
modify the flow distribution. This effect is generally small
in designs by Method 1 (seeFig. 7) because the pressure
drop in d/c channels is negligible, but can be significant in
designs by Method 2. The bifurcation structure however, has
two disadvantages: large area occupied by the d/c channels
if N is large and many splits within each flow path, which
together with longer d/c channels can increase the pressure
drop (particularly important at higher flow rates).

In general, it can be said that the consecutive structure
by Method 1 is more simple and safe than the others since
information on tolerances and range of flow rates for low
to moderateRe is not required for its design. Only when
a constant depth is required, similar to or smaller than the
reaction channel width, a consecutive design by Method 2 is
better. At highReadditional pressure losses would need to
be considered in the consecutive structures and a bifurcation
structure may be preferable.
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